
A PRELIMINARY IMPLEMENTATION OF A CONTENT–AWARE NETWORK NODE

N. Vorniotakis, G. Xilouris, G. Gardikis,
N. Zotos, A. Kourtis

National Center for Scientic Research “Demokritos”
Institute of Informatics and Telecommunications

Patriarchou Gregoriou st, Ag. Paraskevi
Athens 165 10, Greece

nkvorn@iit.demokritos.gr

E. Pallis

Department of Applied Informatics and Multimedia
Technological Educational Institute of Crete

Estauromenos, 715 00 Heraklion, Crete, Greece
epallis@pasiphae.teiher.gr

ABSTRACT

This paper presents a preliminary implementation of a
content–aware network node as part of a Content–Aware ca-
pable network infrastructure. The proposed network node fa-
cilitates all the possible functions provided by an ordinary
router or gateway while at the same time exploits flow– and
content– awareness in order to identify the content carried
within a flow and handle it efficiently. In this context this
paper discusses the main concepts and operating principles
around the flow and content awareness and presents a pre-
liminary implementation, build around the Linux operating
system.

Index Terms— content–aware, MANE, QoS, media net-
works, flow-aware, DPI

1. INTRODUCTION

Nowadays the trend in network management is to push intel-
ligence to the edges of the network infrastructure, while at
the core continue to provide fast switching and forwarding
supporting the incremental needs for speed and availability.
The constant evolution in hardware capabilities — in terms of
CPU power and memory availability — is an enabling factor
in order to design network equipment capable of baring the
effort of identifying the content transferred inside the packet
flows and applying specific policies or routing respectively.

In the same time multimedia content, is anticipated to be
increased by at least a factor of 6, rising to more than 990
Exabytes before 2012, fueled mainly by the users themselves
[1]. In order for future network architectures to cope with
this versatile content and services, future network equipment
should become content-aware. This capability will offer more
functionalities to the network management entities in order to
efficiently manage the network and offer flexible and dynamic
traffic handling and QoS assurance functions.

This work presents a preliminary implementation of a
content–aware network node based on Linux operating sys-

tem. This content–aware network node is seen as an enhanced
Media-aware Network Element (MANE). As defined in [2],
MANE is a network element, such as a middle–box or appli-
cation layer gateway that is capable of parsing certain aspects
of the RTP payload headers or the RTP payload and reacting
to the contents. One of the most prominent uses of MANE is
along with H.264/SVC encoded flows for in–network adap-
tation of RTP flows in an effort to enable efficient network
usage and dynamic adaptation to available network capac-
ity. The implemented network node exploits deep packet in-
spection (DPI) algorithms in order to provide the necessary
content-awareness functionalities. Depending on the content
type, the node control module enables i) the policing and dif-
ferentiation of the incoming traffic flows and ii) routing table
selection and forwarding.

Finally a preliminary implementation of the proposed
content-aware network node is tested in laboratory setup.

The paper is structured as follows: Section 2 discusses
the content–awareness enabling functions, Section 3 presents
the design and implementation of the content-aware network
node, Section 4 presents the testbed and the validation scenar-
ios and finally Section 5 presents the results.

2. CONTENT–AWARE ENABLERS

2.1. Flow awareness

Content classification could be performed per flow of net-
work data. This can reflect in much smaller processing delays
since, if the content of a flow is classified, then every subse-
quent packet of that flow arriving at the router can be instantly
forwarded to the appropriate destination. No further process-
ing is needed. So only the minimum amount of packets of a
flow, in order to determine the service, need to be processed,
resulting to reduced processing delay.

The flow management can be applied only on Ingress
routers using a system with a hash table. This will remove
the need for keeping track of flows on all nodes of the core

978-1-61284-350-6/11/$26.00 ©2011 IEEE

network and result on a more scalable system.

2.2. Traffic Classification

Traffic classification techniques, in current telecommunica-
tion networks, span from the exploitation of Layer 3 infor-
mation to Layer 7. Beyond this, many techniques combine
multilayer information with application data inspection (DPI)
in order to provide accurate traffic identification [3]. Another
approach less invasive but with complex implementation, is
the exploitation of methods that do not relay on the packet
protocol stack information but also on statistical flow infor-
mation [4]. Currently, there is not a definite solution that can
address all the cases, triggering much research in these fields
[5][6][7].

A survey of the methods to classify traffic at an applica-
tion level includes [8]:

• Exact matching, i.e., infer the application identity by
assuming that most applications consistently user well-
known TCP and UDP port numbers (e.g., 80 for HTTP,
22 for SSH etc.).

• Prefix match: the rule field could be a prefix of the
header field; this could be used also to get statistics
about packets originating from a sub-network

• Heuristic methods, using Deep Packet Inspection (DPI)
[5], i.e., looking for application-specific data (or well-
known protocol strings) within the TCP or UDP pay-
loads

• Machine learning based on statistical features:

– Supervised Learning, i.e., Naive Bayes, Deci-
sion Tree, Nearest Neighbors (NN), Linear Dis-
criminate Analysis (LDA), Quadratic Discrimi-
nate Analysis (QDA), Bayesian Neural network

– Unsupervised Learning, i.e., EM, AutoClass and
K-Means.

2.2.1. DPI

The DPI approach suggests that network flows are inspected
and information is extracted from higher layers of packet data
(up to application layer) [9]. By exploiting the rich high layer
information that is provided through DPI, content–aware net-
work node control functions will provide various options in
packet flow handling in respect to policing, shaping, QoS etc.

The exploitation of DPI methods for traffic classification
is build around two basic assumptions: Third parties unaffili-
ated with either source or recipient are able to inspect each IP
packets payload (i.e., is the payload visible?) The classifier
knows the syntax of each applications packet payloads (i.e.,
can the payload be interpreted?)

Fig. 1. Application modules.

A library of protocol signatures and filter strings has to be
available to facilitate the content identification. This library
may be consulted, so the protocol can be accurately detected.
Depending on how this library is build, the detection can be
arbitrarily accurate. However, the larger it gets the more re-
source hungry the classification procedure grows. The sig-
nature library needs to be constantly updated as application
protocols evolve or as new protocols emerge. Relying on an
out-dated library will have a severe impact on the accuracy of
the identification.

3. DESIGN AND IMPLEMENTATION

Content–awareness system functions were designed to be
modular and scalable, so it will be able to cope with the high
performance demands needed for the proposed functionality.

The modules of the application and their interconnection
are illustrated in Figure 1. The incoming packets are follow-
ing the path denoted with the dotted arrows to reach the next
routing node. The other modules manage the flows in parallel
and try to perform a mapping of the content of each flow to a
service class.

The Flow Handling module comprises of the Packet Cap-
turer module, that captures incoming network packets, and
the Flow Handler that organizes incoming packets to network
flows.

The Routing module comprises of the Packet Marker and
the Routing Tables Handler. The Packet Marker marks the
flows that are to be policed — according to the configuration
send by the Network Management — so the kernel routing
system may apply specialized forwarding. The Routing Table
Handler is the module that can create new routing tables and
policies so that the subsequent packets of the flow are policed
as needed.

The Content Awareness Module depends on the Heuris-
tics functions to determine the service of each flow using

Deep Packet Inspection (DPI) techniques or Port to Service
Mapping for simple services identification.

Finally the Policer Module is in charge of applying the
desired policies at the respective flows. This module includes
also the queue schedulers that are used for traffic control
(shaping, differentiation, prioritization).

3.1. Flow Handling Module

The Flow Handling module is responsible for detecting the
network flow each incoming packet belongs to so that a policy
can be applied per flow rather than per packet. This approach
removes the need to process each packet individually; if a
packet belongs to an already classified flow it is not processed
resulting to big savings in terms of processing delay.

Network flows at a point in time can be uniquely identified
by the 5–tuple of the sender address and port, the destination
address and port and the transport layer protocol used. This
5–tuple is used to in order to calculate a hash key in order
to keep the reference of this flow to a Flow Table that keeps
track of the incoming flows detected. A flow idleness timer is
incorporated in order to expunge the idle flows from the Flow
Table, hence saving memory resources.

3.2. Content Awareness Module

The Heuristic module is the basis of the content–awareness
functionality. It monitors the state of a network flow and uses
heuristics to determine the content of the flow. Following the
content identification for a given flow a Content Mapping Ta-
ble is consulted, that indicates the policies and prioritization
to be applied.

A simple version of the RTP dissector is illustrated on Fig-
ure 2 using a flowchart. As the incoming packets are travers-
ing the processing loop, each one is checked to determine
whether it belongs to an already established flow. If it belongs
to a new flow it goes through some tests to determine whether
it is an RTP packet. The version illustrated is a two pass con-
trol. First, the packet needs to be a UDP packet on an even
port. If this is true, the SSDP and the packet timestamp are
stored and the flow created for the packet is marked so it will
have to go through the second check. When another packet
arrives for the flow and reaches the second control branch, its
SSDP is checked to be equal with the previous and the times-
tamp difference is 1. If those hold then the flow is marked as
an RTP stream.

This is a simplified version of RTP detection that works
quite well but is only serves as an example. The actual de-
tection algorithm is much more complex so it can be accurate
on most cases since it has more passes and also takes into
account RTCP data.

If the heuristic method can not classify the flow or if it is
not desired to use DPI, the Port to Service mapping module
can be used that uses the IANA ports–to–service suggestions.

Fig. 2. RTP dissector.

3.3. Routing Module

This module is responsible for applying at the incoming, iden-
tified flows the appropriate internal marking in order for other
modules to apply the appropriate policies and proceed to in-
dicated actions. In general for every incoming flow, after the
content is identified three main decisions need to be made.
First being the how to police the traffic at the ingress inter-
face, secondly how to route the flow and last how to handle
(shaping, conditioning, prioritization) the flow at the egress.
This module exploits functionalities provided by the Linux
OS kernel and User Space utilities (i.e. iptables, traffic con-
trol).

The Network Management entities that control the all
these aspects through a Content Mapping Table that contains
information on how to police and condition the flows depend-
ing on content type.

In order to achieve Content Based Routing a number of
alternative local RIBs is used that are statically pre-assigned.
The CMT contains the mapping of each content type to the
appropriate RIB. The flow is marked appropriately depending
on the current policy for the content and is forced to be for-
warded using the routing tables created for the type of service
it is categorized as. In this preliminary implementation static
RIB were used, however a dynamic routing protocol may be
used for the update of the routing tables so the system can
adapt to the requirements of the network as they change.

4. TESTBED

The architecture of the test–bed used is illustrated on Fig-
ure 3 , the part of the network that is on the left of the ingress
router is the access network of the server which relies on the

Alternate Path

Default Path
Egress

Router

Ingress

Router

Content

Consumer

Gigabit

Switch

10.10.10.2

10.10.10.1

10.3.10.210.3.10.1

10.2.10.1 10.2.10.2
192.168.11.1

192.168.11.2

Traffic

Generator

Streaming

Server

10.10.10.3

Fig. 3. Topology and configuration.

domain 10.10.10.0/24. The part on the right of the egress
router is the access network of the client which is the domain
192.168.11.0/24. For the sake of simplicity, this network has
only a single link from the egress point to the client.

The core network is composed of the ingress router, the
egress router and the two links between them. The default
path is the Gigabit link on the domain 10.2.10.0/24. The al-
ternative path is a 100Mbps link on the domain 10.3.10.0/24.

This setup was used to emulate real world scenarios where
services that ought to have special treatment on the core net-
work, are being severely degraded in terms of quality by the
losses in cases of heavy traffic. The sets of measurements per-
formed try to show whether the content–aware functionality
achieved to be beneficial for the prioritized services and if yes
at what level.

The general concept is that the streaming server streams a
flow of a video using RTP to the client that is considered to be
a high priority service. The traffic generator is used to create
a gradually increasing source of background traffic up to the
point that the network reaches its limits and there are losses on
the ingress interface. In the case the network is unable to dis-
tinguish the high priority service (i.e., no content–awareness)
so the service will not receive any special treatment (i.e., for-
warded via the alternative uncongested path). On the other
hand, when the contentaware software is running, the high
priority service can be detected. Then a rule is created and
the subsequent packets of the priority flow will be forwarded
via the uncongested interface.

4.1. Testing Scenarios

On an attempt to prove the usefulness and performance of this
approach, two testing scenarios were employed. Each scenar-
ios are divided in three cases; making use of pfifo schedules
with no classification, using an HTB queueing discipline with
SFQ schedulers on the leaves and re–routing specific class of

services via different paths.
The first Scenario tests the behavior of the throughput of

the network as it gets congested and how it is improved using
traffic classification and re–routing traffic. The second mea-
sures the end–to–end delay and losses of the tree cases.

Another set of measurements was performed so that the
end–to–end delay and losses can be surveyed. A media stream
was transmitted to the client using RTP. The packets were
dumped on the client and server and their timestamps were
compared so that the delay could be calculated. Moreover,
the sequence number of the RTP packet header was used to
detect lost packets.

This sort of measurement required accurate and synchro-
nized clocks so the timing difference of the packets is cor-
rectly calculates. Therefore both the client and server ware
performing synchronization requests to NTP time servers so
their clocks would have the minimum difference possible.

4.1.1. The default case

In this case a classic content–agnostic network is emulated.
All traffic is routed via the default path including important
services. This case is used as a reference of comparison to the
next scenarios that employ content–aware functionality.

4.1.2. The HTB case

This set–up examines the case where a privileged service is
detected using the content–aware modules and is policed us-
ing a higher priority class. The HTB scheduler is used to
provide class full forwarding.

In this case a RTP flow is used. Classic port–based con-
tent classification techniques would fail to classify the service
because services were detected using destination port num-
bers. However, RTP cannot use a standard port number so a
heuristics based classification must be used.

Once the flow of the priority service is detected, it is
marked so the Linux kernel forwarding plane can use the pol-
icy defined for this particular content for the subsequent pack-
ets of the flow.

4.1.3. The content–aware routing case

In this case the high priority service is forwarded to a different
path upon detection. This path could be a better behaving link
for the type of service that is forwarded. For example it could
have more bandwidth available lower delay or jitter etc.

For this case, different routing tables are created for each
class of service. When the network flow of a managed service
is detected, it is marked so it is forced to be forwarded using
the routing table for the service it belongs.

5. RESULTS

5.1. The default case

In this scenario the pfifo queue was employed to the ingress
router. The background traffic was again gradually increased
until the ingress link was congested.

The results are illustrated on Figure 4.a. The aggregate
traffic is rate limited to the ingress interface at 100 Mbps.
Since this limit is surpassed, the FIFO queue starts dropping
packets randomly. The lost packets are represented on the
figure with green impulses.

The congestion results to a very big queueing delay which
after a threshold starts increasing linearly until it gets very
high a almost 1200 ms. This very high delay, combined with
the packet loss, makes this link unusable for services that are
sensitive to these factors like interactive applications, VOIP
or media streaming. What is worse, there is no special treat-
ment to important services, so mission critical packets could
be lost.

5.2. The HTB case

In this case the HTB structure was used again with SFQ
schedulers. This allows for prioritized services so the video
streamed will be marked as having a higher priority so it will
not be affected of the backgroud traffic.

The results are illustrated on Figure 4.b. The aggregate
traffic is limited to 100 Mbps but this time there is no lost
packets for the privileged service. Moreover, there is not any
remarkable increase on the end–to–end delay of the stream.
There is only an slightly increased scattering on the delay val-
ues indicating a slight increase on the jitter value.

5.3. The content–aware routing case

In this case, the content aware routing functionality is used to
forward the media stream trough the alternate path.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 30 35 40 45 50 55 60
 0

 20

 40

 60

 80

 100

 120

D
e
la

y
 (

m
s
)

T
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (sec)

Delay on Client

Delay
Loss

Aggregate Traffic

(a) Delay of video stream (pfifo)

 19

 19.5

 20

 20.5

 21

 21.5

 22

 25 30 35 40 45 50 55 60
 0

 20

 40

 60

 80

 100

 120

D
e
la

y
 (

m
s
)

T
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (sec)

Delay on Client

Delay
Aggregate Traffic

(b) Delay of video stream (HTB with SFQ)

 19

 19.5

 20

 20.5

 21

 21.5

 22

 30 35 40 45 50 55 60 65
 0

 20

 40

 60

 80

 100

 120

D
e
la

y
 (

m
s
)

T
ro

u
g
h
p
u
t
(M

b
p
s
)

Time (sec)

Delay on Client

Delay
Aggregate Traffic

(c) Delay of video stream (routing)

Fig. 4. Results of the three scenarios.

The results are illustrated on Figure 4.c. In this case only
the background traffic is following the default path and is rate
limited. The privileged service is following the alternate path
and therefore has not lost any packets.

The delay increase is again negligible. The scattering of
the delay values is also smaller indicating less jitter.

6. CONCLUSIONS

This paper presented a preliminary implementation of a
content-aware network node. Moreover a test–bed was used
in order to validate the implementation either in the case
where the identified content is differentiated and prioritized
from the background traffic or in the case that the identi-
fied flow is routed from another physical interface. Further
work is going on to fully implement a Linux based content-

aware node in the framework of the FP7 research project AL-
ICANTE.

7. ACKNOWLEDGEMENTS

This work was supported by the EC in the context of the AL-
ICANTE project (FP7-ICT-248652)

8. REFERENCES

[1] Media Delivery Platforms Cluster, “Multimedia deliv-
ery in the future internet: A converged network perspec-
tive,” 2008.

[2] S. Wenger, MM Hannuksela, T. Stockhammer, M. West-
erlund, and D. Singer, “RFC 3984; RTP payload format
for H. 264 video,” IETF, February, 2005.

[3] M. Zhang, W. John, K. Claffy, and N. Brownlee, “State
of the art in traffic classification: A research review,” in
PAM Student Workshop, 2009.

[4] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural
networks for internet traffic classification,” Neural Net-
works, IEEE Transactions on, vol. 18, no. 1, pp. 223–
239, 2007.

[5] A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner,
S. Fernandes, and D. Sadok, “A survey on internet traffic
identification,” Communications Surveys & Tutorials,
IEEE, vol. 11, no. 3, pp. 37–52, August 2009.

[6] J. Garca-Nieto, J. Toutouh, and E. Alba, “Automatic
tuning of communication protocols for vehicular ad hoc
networks using metaheuristics,” Engineering Applica-
tions of Artificial Intelligence, vol. 23, no. 5, pp. 795 –
805, 2010, Advances in metaheuristics for hard opti-
mization: new trends and case studies.

[7] Stenio F. L. Fernandes, Carlos Alberto Kamienski, Ju-
dith Kelner, Dłnio Mariz, and Djamel Sadok, “A strati-
fied traffic sampling methodology for seeing the big pic-
ture.,” Computer Networks, vol. 52, no. 14, pp. 2677–
2689, 2008.

[8] T.T.T. Nguyen and G. Armitage, “A survey of tech-
niques for Internet traffic classification using machine
learning,” Communications Surveys & Tutorials, IEEE,
vol. 10, no. 4, pp. 56–76, 2009.

[9] Klaus Mochalski and Hendrik Schulze, “Deep
packet inspection,” White paper, dpacket.org,
http://www.ipoque.com/userfiles/file/
DPI-Whitepaper.pdf, 2009, [Online; accessed
12-February-2010].

[10] ICT-ALICANTE, “Media ecosystem de-
ployment through ubiquitous content-aware
network environments,” No248652, http:
//www.ict-alicante.eu, 2010.

